Same in Python, Rust, Haskell and probably many others.
But apparently JS does work that way, that is its filter
always iterates over everything and returns a new array and not some iterator object.
Same in Python, Rust, Haskell and probably many others.
But apparently JS does work that way, that is its filter
always iterates over everything and returns a new array and not some iterator object.
Hasn’t Google already made advances through its Alpha Geometry AI?? Admittedly, that’s a geometry setting which may be easier to code than other parts of Math and there isn’t yet a clear indication AI will ever be able to reach a certain level of creativity that the human mind has, but at the same time it might get there by sheer volume of attempts.
Wanted to focus a bit on this. The thing with AlphaGeometry and AlphaProof is that they really treat doing math as a game, not unlike chess. For example, AlphaGeometry has a basic set of rules, it can apply them and it knows when it is done. And when it is done, you can be 100% sure that the solution is correct, because the rules of the game are known; the 28/42 score reported in the article is really four perfect scores and three zeros. Those systems do use LLMs, but they really are only there to suggest to the system what to try doing next. There is a very enlightening picture in the AlphaGeometry paper here: https://www.nature.com/articles/s41586-023-06747-5#Fig1
You can automatically verify correctness of code the same way. For example Lean, the language AlphaProof uses internally, can be used for general programming. In general, we call similar programming techniques formal methods. But most people don’t do this, since this is more time-consuming than normal programming, and in many cases we don’t even know how to define the goal of our code (how to define correct rendering in a game?). So this is only really done when the correctness of the program is critical, like famously they verified the code of the automatic metro in Paris this way. And so most people don’t try to make programming AI work this way.
It seems OP wanted to pass the file name to -k
, but this parameter takes the password itself and not a filename:
-k password
The password to derive the key from. This is for compatibility with previous versions of OpenSSL. Superseded by the -pass argument.
So, as I understand, the password would be not the first line of /etc/ssl/private/etcBackup.key
, but the string /etc/ssl/private/etcBackup.key
itself. It seems that -kfile /etc/ssl/private/etcBackup.key
or -pass file:/etc/ssl/private/etcBackup.key
is what OP wanted to use.
Oracle trilateration refers to an attack on apps that have filters like “only show users closer than 5 km”. In case of the vulnerable apps, this was very accurate, so the attacker could change their position from the victim (which does not require physical movement, the application has to trust your device on this, so the position can be spoofed) until the victim disappeared from the list, and end up a point that is almost exactly 5 km from the victim.
Like if it said the user is 5km away, that is still going to give a pretty big area if someone were to trilateral it because the line of the circle would have to include 4.5-5.5km away.
This does not help, since the attacker can find a point where it switches between 4 km and 5 km, and then this point (in the simplest case) is exactly 4.5 km from the victim. The paper refers to this as rounded distance trilateration.
I like btdu which is essentially ncdu, but works in a way that is useful even if advanced btrfs features (CoW, compression etc.) are used.
I am afraid you are still a bit misled; WireGuard is exactly what they use for the demo video. In general the underlying protocol does not matter, since the vulnerability is about telling the system to direct the packages to the attacker, completely bypassing the VPN.
I really need to try out Mercury one day. When we did a project in Prolog at uni, it felt cool, but also incredibly dynamic in a bad way. There were a few times when we misspelled some clause, which normally would be an error, but in our case it just meant falsehood. We then spent waaay to much time searching for these. I can’t help but think that Mercury would be as fun as Prolog, but less annoying.
I actually use from time to time the Bower email client, which is written in Mercury.
My understanding is that all issues are patched in the mentioned releases, the config flag is not needed for that.
The config flag has been added because supporting clients with different endianness is undertested and most people will never use it. So if it is going to generate vulnerabilities, it makes sense to be able to disable it easily, and to disable it by default on next major release. Indeed XWayland had it disabled by default already, so only the fourth issue (ProcRenderAddGlyphs
) is relevant there if that default is not changed.
I got curious and decided to check this out. This value was set to the current one in 2009: https://github.com/torvalds/linux/commit/341c87bf346f57748230628c5ad6ee69219250e8 The reasoning makes sense, but I guess is not really relevant to our situation, and according to the newest version of the comment 2^16 is not a hard limit anymore.
Interesting. I looked this up and I think that in Poland, the wait time in let’s say Warsaw peaked at like 2 months during pandemic, but is around 2 weeks now.
Many people living in big cities will have their exams in smaller WORDs anyway, as the pass rates tend to be higher there (not a surprise, less traffic means an easier exam). Apparently in some WORDs you can even get a new attempt the same day after failing one.
In Poland:
Phoenotopia: Awakening – an amazing metroidvania-related game. Relatively more popular than the other games I list, but is honestly one of my favorite games of all time.
Vision: Soft Reset – a metroidvania, but you can travel backwards and forwards in time and this really matters for gameplay.
Bombe – Minesweeper, but instead of solving the puzzles manually, you create rules (“if there is a cell with the number N and there are N empty cells around it, mark them all as mines”) which the game applies automatically.
SOLAS 128 – a puzzle game where you redirect signals in a huge machine, just a great experience if you like puzzle games.
The bootloader is stored unencrypted on your disk. Therefore it is trivial to modify, the other person just needs to power down your PC, take the hard drive out, mount it on their own PC and modify stuff. This is the Evil Maid attack the other person talked about.
Edit: Actually, I thought about it, and I don’t think clang’s behavior is wrong in the examples he cites. Basically, you’re using an uninitialized variable, and choosing to use compiler settings which make that legal, and the compiler is saying “Okay, you didn’t give me a value for this variable, so I’m just going to pick one that’s convenient for me and do my optimizations according to the value I picked.” Is that the best thing for it to do? Maybe not; it certainly violates the principle of least surprise. But, it’s hard for me to say it’s the compiler’s fault that you constructed a program that does something surprising when uninitialized variables you’re using happen to have certain values.
You got it correct in this edit. But the important part is that gcc will also do this, and they both are kinda expected to do so. The article cites some standard committee discussions: somebody suggested ensuring that signed integer overflow in C++20 will not UB, and the committee decided against it. Also, somebody suggested not allowing to optimize out the infinite loops like 13 years ago, and then the committee decided that it should be allowed. Therefore, these optimisations are clearly seen as features.
And these are not theoretical issues by any means, there has been this vulnerability in the kernel for instance: https://lwn.net/Articles/342330/ which happened because the compiler just removed a null pointer check.
You might also like https://github.com/nvim-neorg/neorg which is not meant to be compatible with Emacs org-mode, but rather something new that’s built around similar ideas but for Neovim. Hadn’t used it myself though, only heard about it.
You could make an argument that not using banking apps decreases your security, since most banks use either SMS or those apps as the second factor while confirming the operations. It is true that the apps are of varying quality, but SMS is not really a serious alternative. Some banks do have apps that are limited to confirming operations, and one bank where I live did recently start accepting U2F, which is amazing news.
It seems that I can’t see the link from 0.18.3 instances somehow. Maybe one of these will work: https://math.stackexchange.com/a/18347 https://math.stackexchange.com/a/18347 https://math.stackexchange.com/a/18347
Imagine a soccer ball. The most traditional design consists of white hexagons and black pentagons. If you count them, you will find that there are 12 pentagons and 20 hexagons.
Now imagine you tried to cover the entire Earth in the same way, using similar size hexagons and pentagons (hopefully the rules are intuitive). How many pentagons would be there? Intuitively, you would think that the number of both shapes would be similar, just like on the soccer ball. So, there would be a lot of hexagons and a lot of pentagons. But actually, along with many hexagons, you would still have exactly 12 pentagons, not one less, not one more. This comes from the Euler’s formula, and there is a nice sketch of the proof here: https://math.stackexchange.com/a/18347.
Every prime larger than 3 is either of form 6k+1, or 6k+5; the other four possibilities are either divisible by 2 or by 3 (or by both). Now (6k+1)² − 1 = 6k(6k+2) = 12k(3k+1) and at least one of k and 3k+1 must be even. Also (6k+5)² − 1 = (6k+4)(6k+6) = 12(3k+2)(k+1) and at least one of 3k+2 and k+1 must be even.
IANAL nor intelligent, but after skimming the text of the directive I felt like the definition of damage is very limited. In particular, if I understand correctly:
would not be covered by this directive, this directive is only about a human being hurt in some way,
would be covered in case of “your game installs a kernel-level anticheat and the anticheat breaks PCs”, but not in the case of “you uploaded an upgrade to a firmware of the washing machine you produced and it bricked the machines”; the directive is not about a product breaking, but about the product breaking your health, other property or data,
is basically the exact case this directive covers.